Professor Shengxiang Yang

Job: Professor of Computational Intelligence, Director of the Centre for Computational Intelligence (CCI)

Faculty: Computing, Engineering and Media

School/department: School of Computer Science and Informatics

Research group(s): Centre for Computational Intelligence (CCI)

Address: De Montfort University, The Gateway, Leicester, LE1 9BH UK

T: +44 (0)116 207 8805

E: syang@dmu.ac.uk

W: http://www.tech.dmu.ac.uk/~syang/

 

Personal profile

Shengxiang Yang is Professor of Computational Intelligence and Director of the Centre of Computational Intelligence (CCI), De Montfort University. Before joining the CCI in July 2012, he worked at Brunel University, University of Leicester, and King's College London as a Senior Lecturer, Lecturer, and Post-doctoral Research Associate, respectively.

Shengxiang's main research interests lie in evolutionary computation. He is particularly active in the area of evolutionary computation in dynamic and uncertain environments. Shengxiang has also published on the application of evolutionary computation in communication networks, logistics, transportation systems, and manufacturing systems, etc.

Research group affiliations

Centre for Computational Intelligence

Publications and outputs

  • Learning to guide particle search for dynamic multi-objective optimization
    dc.title: Learning to guide particle search for dynamic multi-objective optimization dc.contributor.author: Song, Wei; Liu, Shaocong; Wang, Xinjie; Yang, Shengxiang; Jin, Yaochu dc.description.abstract: Dynamic multiobjective optimization problems (DMOPs) are characterized by multiple objectives that change over time in varying environments. More specifically, environmental changes can be described as various dynamics. However, it is difficult for existing dynamic multiobjective algorithms (DMOAs) to handle DMOPs due to their inability to learn in different environments to guide the search. Besides, solving DMOPs is typically an online task, requiring low computational cost of a DMOA. To address the above challenges, we propose a particle search guidance network (PSGN), capable of directing individuals’ search actions, including learning target selection and acceleration coefficient control. PSGN can learn the actions that should be taken in each environment through rewarding or punishing the network by reinforcement learning. Thus, PSGN is capable of tackling DMOPs of various dynamics. Additionally, we efficiently adjust PSGN hidden nodes and update the output weights in an incremental learning way, enabling PSGN to direct particle search at a low computational cost. We compare the proposed PSGN with seven state-of-the-art algorithms, and the excellent performance of PSGN verifies that it can handle DMOPs of various dynamics in a computationally very efficient way. dc.description: The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
  • Online semi-supervised active learning ensemble classification for evolving imbalanced data streams
    dc.title: Online semi-supervised active learning ensemble classification for evolving imbalanced data streams dc.contributor.author: Guo, Yinan; Pu, Jiayang; Jiao, Botao; Peng, Yanyan; Wang, Dini; Yang, Shengxiang dc.description.abstract: Concept drift is a core challenge in classification tasks of data streams. Although many drift adaptation methods have been presented, most of them assume that labels of all data are available, which is impractical in many real-world applications. Additionally, the absence of label makes the imbalance ratio of an imbalanced data stream difficultly being obtained in time, providing the inaccurate guidance for resampling and causing poor generalization. To tackle the joint challenges, an online semi-supervised active learning method is proposed to classifier imbalanced data streams with concept drift. A newly-arrived data is first added to the sliding window, and then assigned a pseudo label in terms of its nearest cluster. Meanwhile, semi-supervised clustering algorithm offers its predicted label. Based on the above two predictive labels, cluster-based query strategy provides the criteria for the evaluation and selection of representative instances. More especially, the uncertainty and importance of instances are defined to synthetically evaluate its representativeness. After obtaining true labels of typical ones, ensemble classifier is updated by all instances in current sliding window. Experimental results on 13 synthetic and real data streams indicate that the proposed method outperforms six comparative methods on both G-mean and Recall under various labeling budgets.
  • Active broad learning with multi-objective evolution for data stream classification
    dc.title: Active broad learning with multi-objective evolution for data stream classification dc.contributor.author: Cheng, Jian; Zheng, Zhiji; Guo, Yinan; Pu, Jiayang; Yang, Shengxiang dc.description.abstract: In a streaming environment, the characteristics and labels of instances may change over time, forming concept drifts. Previous studies on data stream learning generally assume that the true label of each instance is available or easily obtained, which is impractical in many real-world applications due to expensive time and labor costs for labeling. To address the issue, an active broad learning based on multi-objective evolutionary optimization is presented to classify non-stationary data stream. The instance newly arrived at each time step is stored to a chunk in turn. Once the chunk is full, its data distribution is compared with previous ones by fast local drift detection to seek potential concept drift. Taking diversity of instances and their relevance to new concept into account, multi-objective evolutionary algorithm is introduced to find the most valuable candidate instances. Among them, representative ones are randomly selected to query their ground-truth labels, and then update broad learning model for drift adaption. More especially, the number of representative is determined by the stability of adjacent historical chunks. Experimental results for 7 synthetic and 5 real-world datasets show that the proposed method outperforms five state-of-the-art ones on classification accuracy and labeling cost due to drift regions accurately identified and the labeling budget adaptively adjusted. dc.description: open access article
  • Low-carbon routing based on improved artificial bee colony algorithm for electric trackless rubber-tyred vehicles
    dc.title: Low-carbon routing based on improved artificial bee colony algorithm for electric trackless rubber-tyred vehicles dc.contributor.author: Guo, Yinan; Huang, Yao; Ge, Shirong; Zhang, Yizhe; Jiang, Ersong; Cheng, Bin; Yang, Shengxiang dc.description.abstract: Trackless rubber-tyerd vehicles are the core equipment for auxiliary transportation in inclined-shaft coal mines, and the rationality of their routes plays the direct impact on operation safety and energy consumption. Rich studies have been done on scheduling rubber-tyerd vehicles driven by diesel oil, however, less works are for electric trackless rubber-tyred vehicles. Furthermore, energy consumption of vehicles gives no consideration on the impact of complex roadway and traffic rules on driving, especially the limited cruising ability of electric trackless rubber-tyred vehichles (TRVs). To address this issue, an energy consumption model of an electric trackless rubber-tyred vehicle is formulated, in which the effects from total mass, speed profiles, slope of roadways, and energy management mode are all considered. Following that, a low-carbon routing model of electric trackless rubber-tyred vehicles is built to minimize the total energy consumption under the constraint of vehicle avoidance, allowable load, and endurance power. As a problem-solver, an improved artificial bee colony algorithm is put forward. More especially, an adaptive neighborhood search is designed to guide employed bees to select appropriate operator in a specific space. In order to assign onlookers to some promising food sources reasonably, their selection probability is adaptively adjusted. For a stagnant food source, a knowledge-driven initialization is developed to generate a feasible substitute. The experimental results on four real-world instances indicate that improved artificial bee colony algorithm (IABC) outperforms other comparative algorithms and the special designs in its three phases effectively avoid premature convergence and speed up convergence. dc.description: open access article
  • Automatically constructing a health indicator for lithium-ion battery state-of-health estimation via adversarial and compound staked autoencoder
    dc.title: Automatically constructing a health indicator for lithium-ion battery state-of-health estimation via adversarial and compound staked autoencoder dc.contributor.author: Cai, Lei; Li, Junxin; Xu, Xianfeng; Jin, Haiyan; Meng, Jinhao; Wang, Bin; Yang, Shengxiang dc.description.abstract: Precisely assessing the state of health (SOH) has emerged as a critical approach to ensuring the safety and dependability of lithium-ion batteries. One of the primary issues faced by SOH estimate methods is their susceptibility to the influence of noise in the observed variables. Moreover, we prefer to automatically extract explicit features for data-driven methods in certain circumstances. In light of these considerations, this paper proposes an adversarial and compound stacked autoencoder for automatically constructing the SOH estimation health indicator. The compound stacked autoencoder consists of two parts. The first one is a denoising autoencoder that learns three different denoising behaviors. The second is a feature-extracting autoencoder that employs adversarial learning to improve generalization ability. The experimental results show that the proposed compound stacked autoencoder can not only get explainable explicit features but also can achieve accurate SOH estimation results compared with its rivals. In addition, the results with transfer learning demonstrate that the proposed method not only can provide high generalization ability but also be easily transferred to a new SOH estimation task. dc.description: The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
  • A hybrid mode membrane computing based algorithm with applications for proton exchange membrane fuel cells
    dc.title: A hybrid mode membrane computing based algorithm with applications for proton exchange membrane fuel cells dc.contributor.author: Zhao, Jinhui; Zhang, Wei; Hu, Tianyu; Xu, Ouguan; Yang, Shengxiang; Zhang, Qichun dc.description.abstract: Membrane computing is a branch of natural computing, which has been extended to solve various optimization problems. A hybrid mode membrane-computing-based algorithm (HMMCA) is proposed in this paper to solve complex unconstrained optimization problems with continuous variables. The algorithmic framework of HMMCA translates from its distributed cell-like membrane structure and communication rule. A non-deterministic evolutionary programming method and two computational rules are applied to enhance the computational performance. In a numerical simulation, 12 benchmark test functions with different variables are used to verify the algorithmic performance. The test results and comparison with three other algorithms illustrate its effectiveness and superiority. Moreover, a case study on a proton exchange membrane fuel cell (PEMFC) system parameter optimization problem is applied to validate its practicability. The results of the simulation and comparison with seven other algorithms demonstrate its practicability. dc.description: open access article
  • Graph convolutional networks for predicting mechanical characteristics of 3D lattice structures
    dc.title: Graph convolutional networks for predicting mechanical characteristics of 3D lattice structures dc.contributor.author: Oleka, Valentine; Zahedi, Mohsen; Taherkhani, Aboozar; Baserinia, Reza; Zahedi, Abolfazl; Yang, Shengxiang dc.description.abstract: Recent advancements in deep learning methods encouraged researchers to apply them to process 3D objects. Initially, convolutional neural networks which have shown their ability in the processing of 2D images were used for 3D object processing. These methods need a complex process to convert 3D objects to 2D images. This conversion leads to increased computation cost and possible information loss during the transformation. This research introduces a Graph Convolutional Network approach for predicting mechanical properties of custom-designed 3D lattice structures for tissue engineering applications. Seventeen scaffold geometrics were generated for training while eight were used for testing. Unlike traditional preprocessing into images, this methodology reduces preprocessing by leveraging GCNs to directly process 3D geometrics in graph form. The experimental results show the efficiency of our proposed method in predicting 3D lattice structures.
  • Hand Gesture Recognition Using a Multi-modal Deep Neural Network
    dc.title: Hand Gesture Recognition Using a Multi-modal Deep Neural Network dc.contributor.author: Fulsunder, Saneet; Umar, Saidu; Taherkhani, Aboozar; Liu, Chang; Yang, Shengxiang dc.description.abstract: As devices around us get more intelligent, new ways of interacting with them are sought to improve user convenience and comfort. While gesture-controlled systems have existed for some time, they either use additional specialized imaging equipment, require unreasonable computing resources, or are simply not accurate enough to be a viable alternative. In this work, a reliable method of recognizing gestures is proposed. The built model correctly classifies hand gestures for keyboard typing based on the activity captured by an ordinary camera. Two models are initially developed for classifying video data and classifying time-series sequences of the skeleton data extracted from a video. The models use different strategies of classification and are built using lightweight architectures. The two models are the baseline models which are integrated to form a single multi-modal model with multiple inputs, i.e., video and time-series in-puts, to improve accuracy. The performances of the baseline models are then compared to the multimodal classifier. Since the multimodal classifier is based on the initial models, it naturally inherits the benefits of both baseline architectures and provides a higher testing accuracy of 100% compared to the accuracy of 85% and 75% for the baseline models respectively.
  • 3D Object Reconstruction with Deep Learning
    dc.title: 3D Object Reconstruction with Deep Learning dc.contributor.author: Aremu, Stephen S.; Taherkhani, Aboozar; Liu, Chang; Yang, Shengxiang dc.description.abstract: Recent advancements and breakthroughs in deep learning have accelerated the rapid development in the field of computer vision. Having recorded a huge success in 2D object perception and detection, a lot of progress has also been made in 3D object reconstruction. Since humans can infer and relate better with 3D world images by just a single view 2D image of the object, it is necessary to train computers to think in 3D to achieve some key applications of computer vision. The use of deep learning in 3D object reconstruction of single-view images is rapidly evolving and recording significant results. In this research, we explore the Facebook well-known hybrid approach called Mesh R-CNN that combines voxel generation and triangular mesh re-construction to generate 3D mesh structure of an object from a 2D single-view image. Although the reconstruction of objects with varying geometry and topology was achieved by Mesh R-CNN, the mesh quality was affected due to topological errors like self-intersection, causing non-smooth and rough mesh generation. In this research, Mesh R-CNN with Laplacian Smoothing (Mesh R-CNN-LS) was proposed to use the Laplacian smoothing and regularization algorithm to refine the non-smooth and rough mesh. The proposed Mesh R-CNN-LS helps to constrain the triangular deformation and generate a better and smoother 3D mesh. The proposed Mesh R-CNN-LS was compared with the original Mesh R-CNN on the Pix3D dataset and it showed better performance in terms of the loss and average precision score.
  • Optimizing electric vehicle routing with nonlinear charging and time windows using improved differential evolution algorithm
    dc.title: Optimizing electric vehicle routing with nonlinear charging and time windows using improved differential evolution algorithm dc.contributor.author: Deng, Jiawen; Zhang, Jihui; Yang, Shengxiang dc.description.abstract: In real-life, green logistics is prevalent with the advent of pollution reduction; therefore, electric vehicle routing problem (EVRP) gains more focus. However, nonlinear charging technique has not obtained adequate attention for EVRP with time windows. In this study, an improved differential evolution (IDE) algorithm is introduced to address a variant of EVRP, which involves time windows and partial recharging policy with nonlinear charging. In IDE, a productive approach is developed to instruct the electric vehicle to charge in advance. A modified crossover operator is proposed to make populations more diverse. Five local neighborhood operators and a simulated annealing algorithm are embedded to enhance search quality. Further, we generate 55 instances based on Solomon benchmark and Analysis of Variance is leveraged to manifest the efficacy. Similarly, three algorithms are selected for comparison, i.e., genetic algorithm, artificial bee colony algorithm, and adaptive large neighborhood search. Experimental comparisons reveal that IDE outperforms others. dc.description: The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.

Click here to view a full listing of Shengxiang Yang's publications and outputs.

Research interests/expertise

  • Evolutionary Computation

  • Swarm Intelligence

  • Meta-heuristics

  • Dynamic Optimisation Problems

  • Multi-objective Optimisation Problems

  • Relevant Real-World Applications

Areas of teaching

Research Methods for Intelligent Systems and Robotics MSc, Software Engineering MSc, Computing MSc, and Business Intelligence Systems and Data Mining MSc Degrees.

Qualifications

BSc in Automatic Control, Northeastern University, China (1993)

MSc in Automatic Control, Northeastern University, China (1996)

PhD in Systems Engineering Northeastern University, China (1999)

Courses taught

I have taught numerous modules at both undergraduate and postgraduate level. Quite a number of modules I taught were significantly developed by myself. The modules I taught are usually designed to be practice-oriented with problem-solving lab sessions based on Java or C++ programming, and hence are highly interesting to and greatly useful for students. They are also very important for different degree programmes in Computer Science and relevant subjects. Some of the modules I have taught are listed as follows:

  • CS3002 Artificial Intelligence (2010 – 2012, Brunel University): 3rd year Computer Science (Artificial Intelligence) BSc module, module leader

  • CS2005 Networks and Operating Systems (2010 – 2012, Brunel University): 2nd year Network Computing BSc module, part module

  • CS5518 Business Integration (2011-2012, Brunel University): Business Systems Integration MSc module, part module

  • CO2017 Networks and Distributed Systems (2005–2010, University of Leicester): 2nd year Computer Science BSc module, module leader

  • CO2005 Object-Oriented Programming Using C++ (2006–2009, University of Leicester): 2nd year Computer Science BSc module, module leader

  • CO1003 Program Design (2006-2007, University of Leicester): 1st year Computer Science BSc module, module leader

  • CO3097 Programming Secure and Distributed Systems (2003–2005, University of Leicester): 3rd year Computer Science BSc & Advanced Computer Science MSc module, module leader

  • CO1017 Operating Systems and Networks (2001 – 2004, University of Leicester): 1st year Computer Science BSc module, module leader

  • CO1016 Computer Systems (2000 – 2002, University of Leicester): 1st year Computer Science BSc module, part module

I have also co-ordinated several BSc projects, as shown below.

  • CS3072/CS3074/CS3105/CS3109 BSc Final Year Projects (2010 – 2012, Brunel University): Co-ordination Team Member

  • CO3012/CO3013/CO3015 Computer Science BSc Final Year Projects (2004 – 2010, University of Leicester): Co-ordinator

  • CO3120 Computer Science with Management BSc Final Year Project (2007 – 2010, University of Leicester): Co-ordinator

  • CO3014 Mathematics and Computer Science BSc Final Year Project (2004 – 2010, University of Leicester): Co-ordinator

  • CO2015 Second Year BSc Software Engineering Project (2003 – 2004, University of Leicester): Co-ordinator

Honours and awards

  • Nominatee to the Best Paper Award for EvoApplications 2016: Applications of Evolutionary Computation, for the paper "Direct memory schemes for population-based incremental learning in cyclically changing environments" by Michalis Mavrovouniotis and Shengxiang Yang, published in EvoApplications 2016: Applications of Evolutionary Computation, Lecture Notes in Computer Science, vol. 9598, pp. 233-247, 2016.

  • Nominatee for the Best-Paper Award of the ACO-SI Track at the 2015 Genetic and Evolutionary Computation Conference, for the paper "An ant colony optimization based memetic algorithm for the dynamic travelling salesman problem" by Michalis Mavrovouniotis, Felipe Martins Muller and Shengxiang Yang, published in the Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation, pp. 49-56, 2015.

  • Winner of the 2014 IEEE Congress on Evolutionary Computation Best Student Paper Award, for the paper entitled "A test problem for visual investigation of high-dimensional multi-objective search" by Miqing Li, Shengxiang Yang and Xiaohui Liu, published in the Proceedings of the 2014 IEEE Congress on Evolutionary Computation, pp. 2140-2147, 2014.

  • Nominatee for the 2005 Genetic and Evolutionary Computation Conference Best Paper Award, for the paper "Memory-based immigrants for genetic algorithms in dynamic environments" by Shengxiang Yang, published in the Proceedings of the 2005 Genetic and Evolutionary Computation Conference, Vol. 2, pp. 1115-1122, 2005.

  • Visiting Professor (2012 – 2014, 2016-2018), College of Information Engineering, Xiangtan University, China

  • Visiting Professor (2011 – 2017), College of Mathematics and Statistics, Nanjing University of Information Science and Technology, China

Membership of professional associations and societies

  • Founding Chair, Task Force on Intelligent Network Systems (TF-INS), Intelligent Systems Applications Technical Committee (ISATC), IEEE Computational Intelligence Society (IEEE CIS), 2012–2018.

  • Chair, Task Force on Evolutionary Computation in Dynamic and Uncertain Environments (ECiDUE), Evolutionary Computation Technical Committee (ECTC), IEEE Computational Intelligence Society (IEEE CIS), 2011–2018.

  • Senior Member, IEEE, since 2014.

  • Member, IEEE, 2000 – 2013.

  • Member, IEEE Computational Intelligence Society (IEEE CIS), since 2005.

  • Member, Evolutionary Computation Technical Committee (ECTC), IEEE Computational Intelligence Society (IEEE CIS), since 2011.

  • Member, Intelligent Systems Applications Technical Committee (ISATC), IEEE Computational Intelligence Society (IEEE CIS), since 2013.

  • Member, Task Force on Evolutionary Computation in Dynamic and Uncertain Environments (ECiDUE), Evolutionary Computation Technical Committee (ECTC), IEEE Computational Intelligence Society (IEEE CIS), 2003 – 2010.

Current research students

First Supervisor:

  • Muhanad Tahrir Younis: Swarm intelligence for dynamic job scheduling in grid computing, started from October 2014

  • Conor Fahy: Evolutionary computation for data stream analysis, started from October 2015

  • Zedong Zheng: started from October 2016
  • Matthew Fox: started from October 2017

Second Supervisor:

  • Ahad Arshad: PhD candidate, co-supervised with Prof. Paul Fleming at De Montfort University, started in October 2017.
  • William Lawrence: PhD candidate, co-supervised with Dr. Mario Gongora at De Montfort University, started in April 2012

Complete PhD Students (I was the 1st Supervisor):

  • Changhe Li: Particle swarm optimisation in stationary and dynamic environments, 2011

  • Imtiaz Ali Korejo: Adaptive mutation operators for evolutionary algorithms, 2011

  • Sadaf Naseem Jat: Genetic algorithms for university course timetabling problems, 2012

  • Shakeel Arshad: Sequence based memetic algorithms for static and dynamic travelling salesman problems, 2012

  • Michalis Mavrovouniotis: Ant Colony Optimization in Stationary and Dynamic Environments, 2013

  •  Miqing Li: Evolutionary Many-Objective Optimization: Pushing the Boundaries, 2015
  • Jayne Eaton: Ant Colony Optimisation for Dynamic and Dynamic Multi-objective Railway Rescheduling Problems, 2017
  • Shouyong Jiang: Evolutionary Algorithms for Static and Dynamic Multiobjective Optimization, 2017

Externally funded research grants information

  • EU Horizon 2020 Marie Sklodowska-Curie Individual Fellowships (PI, Project ID: 661327, 09/2015-08/2017, €195,455): Evolutionary Computation for Dynamic Constrained Optimization Problems (ECDCOP)
  • EPSRC (PI, Standard Research Project, EP/K001310/1, 18/2/2013-17/02/2017, £445,069): Evolutionary Computation for Dynamic Optimisation in Network Environments

  • EPSRC (PI, Standard Research Project, EP/E060722/1 and EP/E060722/2, 1/1/2008-1/7/2011, £307,469): Evolutionary Algorithms for Dynamic Optimisation Problems: Design, Analysis and Applications

  • EPSRC (PI, Overseas Travel Grants GR/S79718/01, 1/11/2003-31/1/2004, £6,700): Adaptive and Hybrid Genetic Algorithms for Production Scheduling Problems in Manufacturing. This grant supported my research visit to Waseda University, Japan, during my Sabbatical leave period. Additionally, Waseda University, Japan contributed JPY140,000 (~£800) toward the visit

  • State Key Laboratory of Synthetical Automation of Process Industry, Northeastern University, China (PI, Open Research Project, 1/1/2012-31/12/2013, CNY300,000 (~£30,000)): Evolutionary Computation for Dynamic Scheduling Problems in Process Industries

  • State Key Laboratory of Synthetical Automation of Process Industry, Northeastern University, China (PI, Open Research Project, 1/1/2010-31/12/2011, CNY150,000 (~£15,000)): Evolutionary Computation for Dynamic Optimization and Scheduling Problems

  • Transport iNet, European Regional Development Fund (Co-I, 11/11/2013 - 28/02/2015, £62,134), Evolutionary Computation for Optimised Rail Travel (EsCORT). This is a linked project between De Montfort University and Go Travel Solutions, a Leicester based SME specialising in assisting businesses to develop sustainable travel solutions, covering people and goods.
  • Hong Kong Polytechnic University Research Grants (Co-I, Grant G-YH60, 1/7/2009-30/6/2010, HKD120,000 (~£10,000)): Improved Evolutionary Algorithms with Primal-Dual Population for Dynamic Variation in Production Systems. Partners:

In addition, I have also received several conference travel grants from UK Research Councils, e.g., Royal Society Conference Travel Grant (£700 in 2007 and £719 in 2005) and Royal Academy of Engineering Conference Grant (£800 in 2007 and £1,200 in 2006).

Internally funded research project information

  • De Montfort University Higher Education Innovation Fund (HEIF) 2017-18 (Co-I, 01/12/2017-31/07/2018, £14,000): Brian-Computer-Interface Prototyping System: Data-based Filtering and Dynamic Characterisation.
  • De Montfort University Higher Education Innovation Fund (HEIF) 2015-16 (PI, 01/01/2016-31/07/2016, £24,800): Development of a Dynamic Resource Scheduling Prototype System for Airports.

  • De Montfort University PhD Studentships 2017-18 (PI, 1/10/2017–30/09/2020, approximately £60,000): supporting stipend and fees for one EU/Home PhD student for three years

  • De Montfort University Fee Waiver PhD Scholarships 2016-17 (PI, 1/10/2016–30/09/2019, approximately £40,000): supporting fees for one overseas PhD student for three years

  • De Montfort University PhD Studentships 2015-16 (PI, 1/10/2015–30/09/2018, approximately £60,000): supporting stipend and fees for one EU/Home PhD student for three years

  • De Montfort University PhD Studentships 2013-14 (PI, 1/10/2013–30/09/2016, approximately £80,000): supporting stipend and fees for one overseas PhD student for three years

  • De Montfort University PhD Studentships 2013-14 (PI, 1/4/2013–31/03/2016, approximately £60,000): supporting stipend and fees for one home PhD student for three years

  • Brunel University PhD Studentships 2011-12 (PI, 01/10/2011–30/09/2014, approximately £80,000): supporting stipend and fees for one overseas PhD student for three years

  • University of Leicester PhD Studentships 2008-09 (PI, 1/10/2008–30/9/2011, approximately £50,000): supporting stipend and fees for one PhD student for three years

  • University of Leicester Research Fund 2001 (PI, 1/1/2001- 31/12/2001, £3,200): Using Neural Network and Genetic Algorithm Methods for Job-Shop Scheduling Problem.

Professional esteem indicators

Shengxiang-Yang